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Abstract

As machine learning (ML) models gain traction in clinical applications, understanding the
impact of clinician and societal biases on ML models is increasingly important. While
biases can arise in the labels used for model training, the many sources from which these
biases arise are not yet well-studied. In this paper, we highlight disparate censorship (i.e.,
differences in testing rates across patient groups) as a source of label bias that clinical ML
models may amplify, potentially causing harm. Many patient risk-stratification models are
trained using the results of clinician-ordered diagnostic and laboratory tests of labels. Pa-
tients without test results are often assigned a negative label, which assumes that untested
patients do not experience the outcome. Since orders are affected by clinical and resource
considerations, testing may not be uniform in patient populations, giving rise to disparate
censorship. Disparate censorship in patients of equivalent risk leads to undertesting in
certain groups, and in turn, more biased labels for such groups. Using such biased labels
in standard ML pipelines could contribute to gaps in model performance across patient
groups. Here, we theoretically and empirically characterize conditions in which disparate
censorship or undertesting affect model performance across subgroups. Our findings call
attention to disparate censorship as a source of label bias in clinical ML models.

1. Introduction

Medical applications are increasingly considering the usage of machine learning (ML) mod-
els. However, researchers have found that ML models may perform disproportionately
poorly on marginalized groups (Buolamwini and Gebru, 2018; Obermeyer et al., 2019; Pier-
son et al., 2021). Biases in training data resulting from spurious correlations between the
inputs and outputs have received much attention (i.e., “shortcuts” Geirhos et al. (2020);
Jabbour et al. (2020)). However, biases can also arise in the labels used for model training.
Obermeyer et al. (2019) highlighted one such type of label bias in equating healthcare need
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Figure 1: Disparate censorship can cause a harmful feedback loop in clinical ML workflows.
Clockwise from top left: a) disparate censorship occurs when a patient subgroup is tested
for some condition at a lower rate compared to other groups. b) When untested patients
are assumed negative, if patients of equivalent risk are subject to disparate censorship
(i.e., undertesting), standard ML training may learn to encode label bias (i.e., missed
positives by clinicians) from undertesting. c) Such models may underestimate risk for
certain patients. d) Acting on such predictions perpetuates undertesting—further harming
already-underserved populations.

with healthcare cost led to downstream inequities in clinical care. We hypothesize that label
bias may arise from other sources as well. Specifically, many researchers rely on assumptions
about labels that could exacerbate pre-existing disparities in healthcare delivery.

For the purposes of ML model training, patient outcomes are often defined based on lab-
oratory/diagnostic test results extracted from the electronic health record (EHR; e.g. (Rhee
and Klompas, 2020; Seymour et al., 2016; Henry et al., 2019)), since clinical chart review
on large patient databases can be prohibitively costly. In doing so, many researchers as-
sign “negative” labels to untested patients (the negativity assumption in positive-unlabeled
learning (Bekker and Davis, 2020)). For example, many sepsis prediction models derive
labels from laboratory test-based definitions, such that untested patients are negative by
definition (Adams et al., 2022; Henry et al., 2015; Fleuren et al., 2020; Reyna et al., 2019).
Beyond sepsis, this is also the case when building models to predict healthcare-associated
infections (Oh et al., 2018; Teeple et al., 2020; Hartvigsen et al., 2018). Researchers typi-
cally justify this assumption, since without it, a model trained on only patients who were
tested may only apply to the small fraction of tested patients, limiting its utility.

This common approach to labeling patient outcomes in ML model development can have
harmful downstream effects when patient groups are tested at different rates. We refer to
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this setting as disparate censorship, which serves as the focus of our analyses. Examples of
disparate censorship in clinical care include lower rates of colon cancer screening for Black
patients (Dolan et al., 2005), or biases in cardiac evaluations for women (Schulman et al.,
1999). When disparate censorship occurs in patients of equivalent risk from different groups,
one group is undertested relative to the other. Undertesting can result in higher rates
of missed diagnoses/positives in certain patient group(s) as compared to other group(s),
leading to disproportionate harm. In practice, disparate censorship and undertesting can be
caused by pre-existing healthcare disparities such as clinician biases (Schulman et al., 1999;
Daugherty et al., 2017), different levels of healthcare access or consent (Spector-Bagdady
et al., 2021), or different test performance across groups (Gaffin et al., 2010).

While the immediate harm of undertesting and missed diagnoses is clear (Magesh
et al., 2021; Berry et al., 2009), ML has the potential to amplify this harm. Pa-
tient risk-stratification models that do not account for the potential impact of disparate
censorship and undertesting may underestimate the risk of the condition of interest. This
could reinforce a harmful feedback loop during ML model deployment (Figure 1), in which
models reinforce biased “do not test” decisions.

In this paper, we characterize when disparate censorship and undertesting can result in
ML model performance gaps across patient subgroups. We study three different settings.
In the first setting, both the covariates and the drivers of the outcome/disease are drawn
from the same distributions for all patient subgroups of interest. In the second setting, the
marginal distribution of covariates varies across groups. For example, social determinants
of health such as education, socioeconomic status, and healthcare access may differ across
race and gender (Singh et al., 2017). Racial disparities in biomarkers indicating COVID-19
severity have also been documented (Price-Haywood et al., 2020). In the third setting,
the conditional probability distribution of the outcome given the covariates may vary across
subgroups. For example, the symptoms most indicative of coronary heart disease may differ
between female and male patients (Lichtman et al., 2018).

First, if the marginal and conditional risk distributions across groups are identical (first
setting), neither disparate censorship nor undertesting result in performance gaps. However,
in many healthcare settings, it is unlikely that the distribution of covariates and drivers
of outcome/disease are identical. When differences in the marginal and conditional risk
distributions arise, we show theoretically and validate empirically that disparate censorship
can contribute to model performance gaps via certain patterns of undertesting. Then, we
identify disparate censorship in clinical data and suggest practical approaches for identifying
when disparate censorship may disproportionately negatively impact one group more than
another. We encourage the ML for healthcare community to further explore methods for
detecting and mitigating the negative effects of disparate censorship and undertesting.

Generalizable Insights about Machine Learning in the Context of Healthcare

This paper highlights and analyzes how disparate censorship and undertesting can result
in performance gaps in risk-stratification models when the underlying data generation pro-
cesses differ across patient subgroups. Our contributions are as follows:
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• We introduce “disparate censorship”, in which patients are tested at different rates
across groups, and formalize how undertesting, or testing disparities in patients with
equivalent risk, can lead to gaps in ML model performance across patient subgroups.

• We prove that undertesting can lead to model performance gaps across subgroups
when certain differences in the marginal and conditional distributions of risk emerge.

• We validate our theory, demonstrating empirically how disparate censorship and un-
dertesting lead to performance gaps across subgroups via a simulation study.

• We identify instances of disparate censorship in clinical data (MIMIC-IV) and suggest
practical approaches for mitigating negative impacts.

2. Problem Setup & Definitions

In this section, we propose a causal model of disparate censorship (Section 2.1), and outline
three settings in which we study the impacts of disparate censorship (Section 2.2).

2.1. Causal Model of Disparate Censorship

We formalize disparate censorship using a causal directed acyclic graph (DAG; Figure 3).
We define the problem using five variables: a ∼ P (A) (binary),1 representing a patient sub-
group (e.g., race, biological sex, hospital location), x ∼ P (X,A) (continuous), representing
feature vectors/covariates for an individual patient, t ∼ P (T | A,X) (binary), representing
whether a patient was tested for a condition of interest, y ∼ P (Y | X,A) (binary, unob-
served), representing whether a patient has the condition of interest, and ỹ ∼ P (Ỹ | Y, T )
(binary), representing whether the patient tested positive for the condition. We assume
X,Y may or may not depend on A. Throughout the paper, we notate subgroup-level ver-
sions of various distributions as Pa(·) for a ∈ {0, 1}. For example, P0(x) denotes “the
distribution of covariates for patients in group a = 0”.

The DAG (Figure 3) encodes two additional assumptions. First, we assume clinician
decisions to test, i.e., T , depend on both X and A. In other words, the level of testing
disparity depends on both the values of subgroup A and covariates X. Second, we assume
no unobserved confounding between X and Y , such that X contains all direct causes of Y .
Later, we will relax our modeling assumptions by allowing either X or Y to causally depend
on A (indicated by the dashed blue arrows).2

Suppose that we aim to train a patient risk-stratification model. We frame this as a
supervised ML task, in which one aims to learn a mapping s : X 7→ R, where X is the
support of x, and predicted values of y are generated by thresholding s(x). In our setting,
we assume that the true label, y, is unobserved. Instead, we observe ỹ (i.e., a test result)
only, a (potentially) noisy proxy for y. The model s is trained on a dataset D = {(xi, ỹi)}ni=1

by minimizing some loss function L : (xi, ỹi, s) → R (e.g., regularized binary cross-entropy
loss) that aims to make model predictions s(xi) close to the observed labels ỹi.

1. In practice, a is often categorical, for which our analysis generalizes, but we restrict a to be binary for
simplicity. We leave analyses of non-categorical/overlapping a as future work.

2. Although A is an exogenous variable, we caution against general interpretations of social categories as
inherent/static characteristics.

4



Disparate Censorship & Undertesting: A Source of Label Bias

no test test

no test test

-
neg. pos.

Undertesting leading to missed positives

missed positives
in blue group

missed positives
in red group

(no missed 
positives in 
either group)

-
neg. pos.

r (risk) r (risk)

no test test

no test test

Undertesting without missed positives

Figure 2: Stylized undertesting patterns. In both examples, the red group is undertested
(higher risk r required for a test). Left: undertesting is harmful due to the disproportionate
rates of missed diagnoses. Right: the absence of missed diagnoses means that undertesting
has no disproportionate impact. In this paper, we focus on the scenario on the left.

We assume that the dataset contains disjoint subgroups Da, where a ∈ {0, 1}. Let
t ∈ {0, 1} be a variable indicating whether a patient was tested (0 = no, 1 = yes). To
simplify, we assume the perfectly accurate tests.3 We define disparate censorship as follows:

Definition 1 (Disparate censorship.) Let Pa(t) be the probability that a patient in group
a was tested for a condition of interest y. Disparate censorship occurs if P0(t) ̸= P1(t).

Under disparate censorship, the true label y is censored/unobserved at different rates in
each patient subgroup. Consequently, if a clinician decides to not test a patient for condition
y (i.e., t = 0), then y is censored, so ỹ = 0. Conversely, if t = 1, then ỹ = y—we observe
whether the patient has condition/outcome y.

Similarly, undertesting can be defined as follows:

Definition 2 (Undertesting.) Define r as a random variable representing the probability
of condition y given covariates x; i.e., r ∝ P (y | x). Let Pa(t|r) denote the probability that
a patient in group a with risk r received a test. Without loss of generality, we say that group
A = 1 is undertested relative to group A = 0 if

∫
r max(0, [P0(t|r)− P1(t|r)])dr > 0.

This definition captures all positive testing gaps between two groups across all levels of
risk. Furthermore, this definition demonstrates how undertesting and disparate censorship
differ: the absence of disparate censorship does not guarantee the absence of undertesting.
To understand when testing disparities have the potential for harm, we focus on undertesting
such that one group suffers disproportionately high rates of missed diagnoses/positives
compared to the other group (Figure 2, left). Undertesting raises fewer concerns if it occurs
in patients without the condition of interest, since undertesting such patients does not result
in missed positives (Figure 2, right).

3. In practice, tests may not be perfectly accurate, and may have different sensitivities in each group. Our
analysis remains the same, since our arguments are based on arguments about label noise. In such cases,
we can define T as a variable indicating whether a patient was tested and the correctness of the test
result, from which the results follow identically.
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Figure 3: Causal DAG used in our analysis.
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Figure 4: Decomposition of overall AUC
into within-group AUCs (cyan) and xAUCs
(magenta). Zero ranking performance
gap between groups a requires parity for
both within-group AUCs (cyan arrow) and
xAUCs (magenta arrow).

2.2. Data Generating Processes

We analyze undertesting and disparate censorship in three settings defined by different
assumptions for the data generating processes. Within each setting, we assume the same
distributional conditions hold at training and inference time.

Setting 1: No difference in marginal and conditional distributions. Formally,

P0(x)
d
= P1(x), P0(y | x) d

= P1(y | x).4 This means that A has no effect on X or Y . In this
setting, both population subgroups have the same distribution of features/covariates, and
the same probability of disease given specific covariate values. Note that A is independent
of X: not only is A not included in X, but no component of X is affected by A. This is an
idealized setting in which there are no differences between subgroups in (1) the distribution
of covariates and (2) their relationship to the outcome of interest. However, this is unlikely
in practice: even when A is not used as a model input, proxies for A can appear in X such

that P0(x)
d
̸= P1(x), as discussed in Vyas et al. (2020); Ioannidis et al. (2021).5 We provide

examples of such proxies in the next setting.

Setting 2: Difference in the marginal distribution only. In this setting, P0(y |
x)

d
= P1(y | x), but P0(x)

d
̸= P1(x). This means that patients with the same covariates

are at equal risk for the disease, but the covariate distribution may vary across subgroups
a. In causal terms, variable A is a cause of/associated with components of X; the dis-
tribution of the covariates of interest varies between patient subgroups. Examples of this
setting arise in the study of social determinants of health (Singh et al., 2017), disparities
in hypertension rates (Lackland, 2014), or multicenter datasets (Bhuva et al., 2019). In

4.
d
=: Equal in distribution.

5.
d

̸=: not equal in distribution.
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addition, differences in healthcare utilization (alluded to in Price-Haywood et al. (2020))
and/or consent (Spector-Bagdady et al., 2021) may also give rise to covariate differences.

Setting 3: Difference in the conditional distribution only. Formally, P0(x)
d
=

P1(x), but P0(y | x)
d
̸= P1(y | x). In causal terms, this means that variable A is a cause

of/associated with Y . In this setting, we make a simplifying assumption that covariate
distributions are identical across a. However, patients with the same covariates that belong
to different subgroups may have different probabilities of disease. For example, female
patients with acute myocardial infarction (heart attack) may present differently than male
patients (Lichtman et al., 2018).

If both the marginal risk distribution (Setting 2) and the conditional risk distribution

(Setting 3) differ (i.e., P0(x)
d
̸= P1(x) and P0(y | x)

d
̸= P1(y | x), then negative impacts from

either setting would apply as well.

3. Theoretical Analysis of Disparate Censorship & Undertesting

We develop a theoretical framework for analyzing disparate censorship. We characterize
settings under which disparate censorship and undertesting are unlikely to lead to perfor-
mance gaps across patient subgroups. We focus on ranking performance gaps: differences in
within-group area under the receiver operating characteristic curve (AUC) and cross-AUC
(xAUC, Kallus and Zhou (2019)).

3.1. Measuring Ranking Performance Gaps

To quantify performance gaps, we focus on ranking metrics, which are frequently used for
evaluating clinical risk-stratification models. In this setting, clinicians aim to identify the
top-k patients to treat, where k may be determined by resource constraints. To evaluate
ranking performance gaps, we report two metrics: (1) the gap in within-group AUC and
(2) the gap in cross-AUC (xAUC, Kallus and Zhou (2019)).

As intuition, recall that the AUC is the probability that a randomly chosen positive
example, xi, has a greater risk score, than a randomly chosen negative example, xj (i.e.,
P (s(xi) > s(xj))). Then the within-group AUC for group a, written as AUCa, is the
probability that two patients from group a (one positive, one negative) were correctly ranked
(Figure 4, cyan). The xAUC has a similar interpretation: xAUCa,a′ is is the probability
that a random positive patient in group a was ranked above a negative patient from group
a′ (Figure 4, magenta). Both within-group AUC and xAUC are key to explaining ranking
performance gaps: while within-group AUC only captures misranking error between patients
in one group, xAUC quantifies misranking error between groups.

Ideally, group ranking performance is equal across groups (Figure 4, cyan arrow), while
cross-group ranking performance should be symmetric (Figure 4, magenta arrow). This
yields the following performance gap metrics—∆AUC and ∆xAUC (lower is better):

∆AUC ≜ |AUC1 −AUC0| (1)

∆xAUC ≜ |xAUC0,1 − xAUC1,0| (2)
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Assuming perfect separation, all patient pairs can be perfectly ranked, and the optimal
overall AUC is 1. In such cases, the optimal AUCa, xAUCa,a′ values are also 1, so ∆AUC =
∆xAUC = 0 (no performance gap across groups). For details, see Appendix C.

3.2. Impact of distributional differences on performance gaps

Here, we prove conditions that lead to zero ∆AUC,∆xAUC in the presence of disparate
censorship and/or undertesting for the three distributional settings studied.

3.2.1. No difference in marginal or conditional risk distributions

In this idealized case (i.e., Setting 1), a model would converge to zero performance gap in
expectation, even when trained on data exhibiting disparate censorship. In fact, Setting 1 is
a special case in which even undertesting, or different testing rates for patients of equal risk,
would not result in performance gaps. This is because the two groups are indistinguishable
in X,Y , since A is independent of both X and Y , so any risk-stratification model will have
identical performance across groups. Thus, ∆AUC,∆xAUC converge to zero.

3.2.2. Difference in marginal distribution only

In Setting 2, the marginal distribution of the covariates varies across groups. We show that
undertesting the low-risk group leads to zero ∆AUC, ∆xAUC.

First, we consider a censorship model in which clinicians apply thresholds to clinical risk
estimates to make testing/treatment decisions (the “threshold approach” in clinical decision-
making (Pauker and Kassirer, 1980)). In covariate space, we call such testing thresholds
“censorship boundaries.” Suppose that clinician decisions to test (P (T | X,A)) and the true
condition indicators (P (Y | X)) can be written as 1[s(x) > (·)] for some “scoring function”
s : X → R. An example is provided in Figure 5: note that the censorship boundaries are
“parallel” to the true decision boundary. Concretely, we assume that there exist τa ∈ R
for a ∈ {0, 1}, which act as censorship thresholds, and b ∈ R, which acts as a decision
boundary, such that t = 1[s(x) > τa ∨ p = 1], where p ∼ Bernoulli(c) for a suitably small
c ∈ (0, 1] for each group a and y = 1[s(x) > b].6 That is; if a patient in group a has risk
s(x) greater than b, their true outcome y is 1. The patient is tested for the condition if
s(x) > τa; otherwise, they are tested with probability c.

We show that, in Setting 2, when training a model using x, when undertesting results
in missed positives, either undertesting the low-risk group or the absence of undertesting
(given that a = 0 is the low-risk group, τ0 ≥ τ1) yields zero performance gap. When
undertesting does not result in any missed positives, no performance gap is expected.

Theorem 3 (Zero performance gap under different marginal distributions.) Sup-
pose that the causal graph in Figure 3 is a correctly-specified structural model, A causally
affects X, and A is not associated with Y . Assume that Y is perfectly separable in x, and
z ≜ s(x) is distributed for each group as z | a = 0 ∼ N (µ0, σ

2), z | a = 1 ∼ N (µ1, σ
2).

6. The constraint c > 0 ensures that no one is tested with zero probability, or else there may be no signal
to learn for sufficiently high censorship thresholds.
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Figure 5: Example decision (black) and censorship boundaries (blue, orange) in 2D. In our
noise model, we assume that the clinician “test decision” (t) and true “condition status” (y)
decision boundaries are based on a threshold with the same functional form (i.e. “parallel”).

Without loss of generality, suppose that µ1 ≥ µ0. Then if τ1 ≤ τ0 or no positives are missed,
the ∆AUC,∆xAUC of a model using x as features converges to 0 for suitable values of τ1.
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This result depends on τ0, τ1 directly instead of the absolute difference in testing rates.
First, when undertesting does not result in missed positives, disparate censorship and un-
dertesting raise no concerns. Furthermore, when patients in the low-risk group a = 0
undertested with respect to a = 1 (or no undertesting is present), the performance gap
converges to zero. This is a special case of the “boundary-consistent noise model” (Menon
et al., 2018). As applied to our setting, this noise model requires that the probability of a
missed positive (testing) only decreases (increases) as the risk of condition y increases.

3.2.3. Difference in conditional distribution only

In Setting 3, the probability of condition y differs across patient groups given features x. We
show that, for the case of linear group-wise decision boundaries and censorship boundaries,
disparate censorship does not result in a performance gap if the decision boundary for each
group is parallel to the censorship boundary (i.e., the two differ by a scalar offset).

Theorem 4 (Zero performance gap under different conditionals.) Suppose that the
causal graph in Figure 3 is a correctly-specified structural model, and A causally affects Y .
Assume that Y is perfectly separable in (x, a). For each a: suppose that censorship/testing
decisions for group a are expressible as t = 1[θ⊤x+ β > 0∨ p = 1] for some θ ∈ Rd, β ∈ R,
p ∼ Bernoulli(c), and all x ∈ X . Furthermore, assume that sa : X × {0, 1} → R has
functional form θ⊤

a x+ ba for each group a, where y = 1[sa(x) > 0] for θa ∈ Rd, ba ∈ R. If
there exists δ ∈ R, δ > 0 such that θa = δθ, the ∆AUC,∆xAUC of a model with features
(x, a) converges to 0.

This result states that a model x and a as features may achieve a zero performance gap
if, within each group, the corresponding decision and censorship boundaries are “parallel”
with one other. We refer to this as the “parallel boundaries” assumption. For intuition, we
reason about each group separately. We proceed as if the censorship boundary lies “above”

7. In practice, there is a broad range of suitable values for τ1; see Appendix A for details.
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the decision boundary, such that some positives are censored, or else there are no missed
positives and the result is immediate. A formal proof can be found in Appendix A.

The “parallel boundaries” assumption is a special case in which undertesting leading to
disproportionate missed positives in one group does not affect ranking. This is because any
censorship threshold parallel to the decision boundary preserves relative ordering of patient
risk within each group, because higher-risk positives are always less likely to be missed.
Thus, if the “parallel boundaries” assumption holds, the resulting pattern of missed positives
does not affect ranking. We can generalize this argument to non-linear decision boundaries if
the decision and testing boundary parameters are expressible in an appropriate reproducing
kernel Hilbert space. However, the “parallel boundaries” assumption is restrictive. We later
explore violations of this assumption in our simulation study.

Our theoretical results show that disparate censorship and undertesting do not always
lead to performance gaps. If there are no differences across groups in the marginal or
conditional distribution of covariates (Setting 1), no gap is expected, even if undertesting is
present. When the marginal distribution of covariates differs by group (Setting 2), zero gap
is possible if the lower-risk group is undertested (i.e., for µ1 ≥ µ0, we must have τ0 ≥ τ1).
Lastly, when the conditional distribution of covariates differs by group (Setting 3), zero
gap is possible if within each group, the censorship and true condition boundaries are
“parallel,” differing only in an offset term. However, these conditions are restrictive. In the
next section, we empirically demonstrate how performance gaps emerge across distributional
settings when differences in the marginal or conditional distributions across groups emerge.

4. Empirical Analysis of Disparate Censorship & Undertesting

We empirically investigate the impacts of disparate censorship via a simulation study. In
this section, we describe the data generation processes and ML modeling details. Then, we
present our findings on ranking performance gaps under disparate censorship. In summary,
when undertesting leads to missed positives, performance gaps arise when the higher-risk
group is undertested (Setting 2) or if testing standards vs. the condition decision boundary
increasingly violate the “parallel boundaries” assumption (Setting 3).

4.1. Simulation data generating process

We simulate a setting in which zero performance gap is theoretically possible when all
patients are tested (i.e., perfect separation). Following the theoretical setup, we consider
the case of binary a ∈ {0, 1} (without loss of generality). We generate an equal number of
“patients” with a = 0 and a = 1, and simulate 10 covariates x for each patient by randomly
sampling a multivariate Gaussian. We generate true labels y and testing decisions t by
applying a non-linear decision boundary s to covariates x (see Figure 6 for a 2D example),
where s may depend on x and a. Concretely, y = 1 if s(x) ≥ 5, and y = 0 otherwise.
Similarly, we use one parameter τa per group to determine testing decisions: t = 1 if
s(x) ≥ τa, and t = 0 otherwise with probability 1 − c for some small c > 0.8 Note that
values of τa < 5 have no effect on censorship, since all x such that s(x) < 5 are negative

8. See Footnote 6; c ensures that this problem is learnable.
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Figure 6: Example of disparate censorship in 2D with groups a = 0 (in blue) and a = 1
(in orange), and decision boundary in black. All blue positives (a = 0, +) below the blue
dashed line are censored; likewise for orange positives (a = 1, +).

by definition and cannot be censored. We then generate observed labels ỹ using y and t,
flipping y from 1 to 0 if t = 0. Full simulation details are provided in Appendix B.

By design, this problem is perfectly separable, so an overall AUC of 1 is feasible. Thus,
when the conditions of Theorem 3 or Theorem 4 are met, in Settings 2 and 3, respectively,
∆AUC,∆xAUC converge to zero in expectation.

Simulating testing disparities. Following the theory, we represent decision thresholds
for testing each group as τ0, τ1 to induce undertesting. Intuitively, τ0, τ1 represent different
clinical standards for testing. Under the threshold model, in Setting 2, the level of under-
testing (as in Definition 2) in group A = 1 relative to group A = 0 is (1 − c)(τ1 − τ0).
In Setting 3, the level of undertesting depends on both τ1 − τ0 and the similarity between
s0, s1, so a general form for undertesting does not exist.

Simulating distributional differences. To simulate P0(x)
d
̸= P1(x) (Setting 2), we

generate covariates x from multivariate Gaussians with different means, but identical co-

variance matrices. For P0(y | x)
d
̸= P1(y | x) (Setting 3), we rotate the decision boundary

by ϕ degrees, where ϕ ∈ [0, 360).

4.2. Model Setup for Evaluating Impact of Disparate Censorship

Throughout our experiments, we consider two probabilistic models. The first is trained on
simulated true condition labels y, which serves as an upper bound on performance. The
second is trained on observed condition labels ỹ. This model represents the realistic setting
in which test results are used as labels for model training. All models are evaluated with
respect to the simulated condition labels y. Since our focus is on model performance gaps
rather than the impact of model specification, we describe modeling details in Appendix D.

5. Experiments & Results

We examine the impacts of disparate censorship and undertesting under certain distribu-
tional differences between groups. We investigate:

• How do disparate censorship and undertesting impact model performance gaps when
there are differences in the marginal distribution only? (Setting 2, Section 5.1)
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Figure 7: ∆AUC (left) and ∆xAUC (right) with 95% empirical CIs for the model trained
on y (gray) and the model trained on ỹ (green). As the degree of undertesting experienced
by the high-risk group a = 1 (τ1 − τ0) increases, ∆AUC,∆xAUC (green) as the missed
positive rate (red) sharply rises in group a = 1 (note that P0(ỹ = 0 | y = 1) = 0—no missed
positives in group a = 0).

• How do disparate censorship and undertesting impact model performance gaps when
there are differences in the conditional distribution only? (Setting 3, Section 5.2)

Setting 1 (no marginal or conditional distributional difference) is a special case of Setting
2 and 3 where the levels of marginal or conditional distributional difference are both zero.

5.1. Undertesting may lead to performance gaps when marginal distributions
of covariates differ

In this subsection, we assess the impact of disparate censorship on model performance
gaps across groups when the marginal distributions differ across groups. In line with our
theoretical results, we find that performance gaps between groups arise when the high-risk
group is increasingly undertested.

Undertesting the high-risk patient group results in large model performance
gaps. In this experiment, we define group a = 1 to be the “high-risk” group. Since
censorship occurs at values of τ0, τ1 greater than or equal to 5, we set τ0 = 5 and then vary
the amount of undertesting for group a = 1 by choosing τ1 ∈ {5, 5.4, 5.8, 6.2, 6.6, 7}. The
degree of undertesting experienced by the high-risk group a = 1 corresponds to τ1 − τ0. In
this setting, patients in group a = 0 are fully tested (no missed positives), while patients in
group a = 1 are increasingly undertested, leading to more missed positives in group a = 1.

At τ0 = 5, τ1 = 5, there is no undertesting; furthermore, there are no missed positives in
either group, so the performance gap is near zero, and matches the performance of a model
trained using true labels y. In practice, convergence to ∆AUC,∆xAUC = 0 is data intensive
in high dimensions due to the prevalence of sparsely-sampled regions near the decision
boundary (i.e., curse of dimensionality). Thus, a small performance gap independent of the
degree of undertesting is expected, as demonstrated by the constant performance gap for the
model trained on y. However, as τ1 increases, so does the rate of missed positives in group
a = 1, and performance gaps grow as expected. Consistent with Theorem 3, ∆AUC,∆xAUC
increase when the high-risk group is undertested (Figure 7).We also examine increasing τ0
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Figure 8: ∆AUC (left) and ∆xAUC (right) with 95% empirical CIs for the model trained on
y (gray) and the model trained on ỹ (green). Even as the degree of undertesting experienced
by the low-risk group a = 0 (τ0−τ1) increases, all metrics stay near oracle performance while
the missed positive rate plateaus (red) in group a = 0 (note that P1(ỹ = 0 | y = 1) = 0—
there are no missed positives in group a = 1).

from 5, inducing missed positives in both groups; the correlation between the performance
gap and the value of τ1 − τ0 still holds (Appendix E).

Undertesting the low-risk group results in small performance gaps. Reversing
the direction of undertesting changes the impact of disparate censorship. We simulate
undertesting in group a = 0 by setting τ1 = 5, and selecting τ0 ∈ {5, 5.4, 5.8, 6.2, 6.6, 7}.
The level of undertesting experienced by group a = 0 corresponds to τ0 − τ1 (reversed with
respect to the previous experiment). In this setting, group a = 0 is increasingly undertested,
resulting in more missed positives, while group a = 1 is fully tested (no missed positives).
As µ1 < µ0, and τ1 ≤ τ0, Theorem 3 suggests that the performance gap converges to 0,
regardless of the level of disparate censorship—even as the missed positive rate grows.

In contrast to the previous experiment, the number of overall positives in the low-
risk group is lower, limiting the amount of harm that undertesting the low-risk group can
cause. Thus, when the low-risk group is undertested, training with labels ỹ versus y does
not significantly affect ∆AUC and ∆xAUC, even as the missed positive rate rises slightly.
Figure 8 shows that the AUC gap is at most 0.01, while the xAUC ranges from 0.04 to 0.06.

In summary, when the marginal distributions of risk vary by group, the harm (in terms
of ∆AUC,∆xAUC) from undertesting the high-risk group is greater than the harm from
undertesting the low-risk group. Intuitively, this is because the high-risk group comprises
the majority of positive patients, such that undertesting them yields more missed positives.
On the other hand, the lower number of positive patients in the low-risk group limits the
potential for undertesting to cause missed positives, yielding a smaller performance gap.
This result highlights a need to understand whether testing disparities disproportionately
impact higher- or lower-risk patient groups. We also examined increasing the distributional
distance between groups (with τ0, τ1 constant); while increasing distribution distance also
widens observed performance gaps, overall trends are similar (Appendix E).
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Figure 9: Heatmap showing median ∆AUC (left) and ∆xAUC (right) at varying levels of
conditional shift (ϕ; x-axis) and censorship rate in a = 1 (P1(t = 0), y-axis); 4 dimensions
rotated. Regions with smaller performance gap are in dark blue, while larger gaps are in
dark red. Performance gaps widen as conditional shift or disparate censorship intensify.

5.2. Differences in conditional risk distribution also lead to performance gaps
under clinician bias

To simulate Setting 3, we vary the level of rotation ϕ from {0, 30, 60, 90, 120, 150, 180} ap-
plied to d′ dimensions of the decision boundary (see Table 1 for details), and report perfor-
mance gaps at τ0 = 5 and varying τ1 ∈ {5, 5.4, 5.8, 6.2, 6.6, 7} to induce testing disparities.

We show results for d′ = 4, but trends are similar for other d′ ∈ {2, 4, 6, 8, 10} (Ap-
pendix E). We plot median ∆AUC,∆xAUC in terms of testing disparity P0(t = 1)−P1(t =
1) (equal to P1(t = 0), since τ0 = 5), and the level of conditional shift ϕ as a heatmap. As
d′ > 0, ϕ ̸= 0 violates Theorem 4 assumptions, performance gaps could emerge.

Consistent with Theorem 4, increasing ϕ leads to larger ∆AUC,∆xAUC (Figure 9).
As the decision boundary rotates further, more true positives at varying levels of risk are
rotated beneath the censorship boundary—increasing the number of missed positives, and
∆AUC,∆xAUC increase. Thus, even with no marginal distributional differences between
groups, standard ML model training using ỹ may result in significant disparities in model
performance when conditional distributional differences are present. This result highlights
the importance of recognizing disparities in conditional risk distributions, i.e., when the
mechanism of condition y varies by group.

6. Practical Concerns & Guidance for Addressing Disparate Censorship

Our empirical results demonstrate that, in some settings, disparate censorship may lead to
performance gaps. Here, we show the extent to which disparate censorship occurs in com-
mon laboratory/diagnostic tests in MIMIC-IV, a popular dataset used in ML for healthcare,
and suggest ways to address disparate censorship.

Disparate censorship in the MIMIC-IV dataset. We validate the existence of dis-
parate censorship in laboratory/diagnostic tests in the MIMIC-IV dataset (Johnson et al.,
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admission for White patient) − P (T = 0 | admission for Black patient)) in common lab-
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“**” denotes a statistically significant difference (α = 1.1× 10−3 post-Bonferroni); p-value
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2020) (version 1.0), a widely-used clinical dataset consisting of electronic health record data
from hospital admissions to emergency/intensive care units at the Beth Israel Deaconess
Medical Center (BIDMC). We limit our analysis to “White” and “Black/African-American”
(category names from MIMIC-IV) patients, since they constitute the two most prevalent
racial groups in the dataset. This yields a sample of 337630 admissions corresponding to
White patients and 80293 admissions corresponding to “Black/African-American” patients
(referred to here as “Black” patients).

We test for disparate censorship via two-sample z-tests (1% significance threshold with
Bonferroni correction; α = 1.1 × 10−3) in standard laboratory/diagnostic tests such as
complete blood counts (CBC, with and without differential), base metabolic panels (BMP),
blood cultures, chest X-ray orders (CXR), arterial blood gas tests (ABG), troponin T tests,
brain natriuretic peptide (BNP) tests, and d-dimer tests. These tests are chosen since they
may be used to help diagnose certain conditions (e.g., anemia or infection from CBCs,
kidney injury from BMPs) or feature directly in clinical definitions (e.g., blood culture
orders and sepsis), which may impact label definitions for training downstream ML models.
Figure 10 shows that statistically significant disparate censorship occurs in CBCs (with and
without diff.), BMPs, blood cultures, CXRs, ABGs, and BNP tests.

Importantly, Black patients are significantly less likely to be tested in instances of dis-
parate censorship. Even though these results do not definitively prove undertesting, the
consistently lower testing rates in Black patients raise concerns about whether ML models
trained on such data could encode such testing disparities, leading to the negative im-
pacts we highlight in our study. This is particularly concerning due to the wide usage of
MIMIC-IV in clinical ML. More detailed results can be found in Appendix E.

Addressing disparate censorship and undertesting. Recall that, if the marginal
risk distribution differs (Condition 1, Figure 11) and the high-risk group is undertested
leading to missed positives (Condition 2, Figure 11), performance gaps may emerge. If the
conditional risk distribution differs instead (Condition 3, Figure 11) and the decision and
censorship boundaries are non-parallel (Condition 4, Figure 11), model performance gaps
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may also emerge. Identifying settings in which disparate censorship and undertesting can
have adverse effects could inform interventions in health policy, clinical care delivery, or even
computational solutions. Here, we suggest potential methods for detecting and mitigating
disparate censorship and undertesting.

Via our causal model (Figure 3), in the presence of disparate censorship (i.e., A → T ),

removing the dependence between A and X in Setting 2 (i.e., P0(x)
d
̸= P1(x)) and/or the

dependence between A and Y in Setting 3 (i.e., P0(y | x)
d
̸= P1(y | x)) would transform

instances of Settings 2/3 into instances of Setting 1, making the patient groups A indistin-
guishable. These approaches could potentially mitigate performance gaps, since a model
trained on such data would behave identically across groups. Identifying whether differ-
ences in the marginal and conditional risk distributions (Settings 2 and 3, respectively) can
provide further information for model design decisions.

To check whether P0(x)
d
= P1(x) (Condition 1 of Figure 11/Setting 2), standard hypoth-

esis tests for distributional equality such as Kolmogorov-Smirnov (Massey Jr, 1951) can
be used for each covariate. Non-parametric distributional distances (e.g., 2-Wasserstein,

MMD (Gretton et al., 2012)) could help quantify to what extent P0(x)
d
= P1(x) holds.

For distinguishing the high-risk group in particular, beyond hypothesis testing, incorporat-
ing domain knowledge on health disparities in the relevant covariates may be necessary.
To determine if the high-risk group is undertested (and therefore, performance gaps may
arise), one may estimate τa (Condition 2, Figure 11) via threshold tests (Simoiu et al.,

2017; Pierson et al., 2018; Patel et al., 2021). For mitigation, the condition P0(x)
d
= P1(x)

is reminiscent of covariate shift in domain adaptation. Hence, standard approaches (e.g.,
reweighing methods (Jiang, 2008), optimal transport (Courty et al., 2017), feature augmen-
tation (Daumé III, 2009)) may apply.

Checking whether P0(y | x) d
= P1(y | x) holds (Condition 3 of Figure 11/Setting 3) is

less straightforward, as we observe y with potentially varying noise rates in each group.
Metrics of conditional distributional similarity (i.e., Bregman correntropy (Yu et al., 2020))
have been proposed, but determining the presence of undertesting remains an open question
for Setting 3, as the covariates most predictive of y may vary by group. Positive-unlabeled
(PU) learning is a promising direction here, but instance-dependent/group-wise PU learning
remains underexplored. We highlight Gong et al. (2021) as a potential approach. Lastly,
resolving the “parallel boundaries” assumption (Condition 4, Figure 11) requires modeling
both boundaries, so the same limitations for checking Condition 3 apply. Using domain
knowledge may be most practical for verifying Conditions 3 and 4.

7. Discussion

We investigate the impact of disparate censorship and undertesting across different settings.
Recall that disparate censorship (or lack thereof) can lead to undertesting if differences in
testing lead to disproportionately frequent missed positives in certain groups. We theoreti-
cally show that when the marginal and conditional distributions of covariates are the same
across groups, undertesting raises no concerns. However, when the marginal risk distribu-
tion differs, performance gaps may arise if certain patient subgroups are undertested such
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Figure 11: Decision tree for identifying when disparate censorship may negatively impact
model performance gaps (assuming perfect separation). In summary, if either the marginal
risk distribution differs (1) and the high-risk group is undertested (2), or the conditional
risk distribution differs (3) and the decision and censorship boundaries are non-parallel (4),
performance gaps may emerge (∆AUC,∆xAUC > 0).

that one group experiences a disproportionate amount of missed positives. To better under-
stand when disparate censorship may lead to model performance gaps due to undertesting,
we conduct a simulation study. We find that when either the marginal or conditional risk
distributions differ, undertesting can result in performance gaps. We then identify disparate
censorship with respect to race in common diagnostic/laboratory tests in the MIMIC-IV
dataset, with significantly lower test rates for Black patients as compared to White patients
in multiple tests. Our findings encourage viligance to harmful undertesting—which can
potentially drive model performance gaps between groups.

Although systematic biases in any part of the ML pipeline can negatively impact model
performance gaps, we focus on biases in clinical data caused by disparities in diagnos-
tic/laboratory test orders. Specifically, we identify an understudied type of label bias caused
by disparities in the delivery of or access to clinical care. Previous work on label bias in ML
for healthcare studied label misspecification: Obermeyer et al. (2019); Pierson et al. (2021)
find that using outcomes such as healthcare costs or certain risk scales as proxies for patient
need may disproportionately harm Black patients. They suggest that training models on
redefined outcomes that align better with patient needs mitigates some of the harm. Such
solutions may be less applicable to disparate censorship: here, the labels correspond to the
outcome of interest, but are (partially) observed at different rates for each group.

Addressing adverse effects of disparate censorship and undertesting requires thoroughly
understanding one’s problem setting. Disparate censorship and undertesting raise few con-
cerns when marginal and conditional risk distributions are identical across patient groups,
but this is unlikely to hold in practice. While we discuss methods for identifying when
disparate censorship and undertesting may result in performance gaps, there remain gaps
in algorithmic approaches for measuring conditional distributional differences. Address-
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ing algorithmic gaps may require domain knowledge from the clinical literature and health
disparities research and/or data with complete observations (i.e., no missed positives).

Once disparate censorship and undertesting are identified, noisy-label and censored ML
methods represent a possible direction for mitigating negative impacts (Jiang and Nachum,
2020; Cheng et al., 2020; Berthon et al., 2021; Wang et al., 2021). Beyond ML methods,
modeling techniques in the presence of censored/missing data include inverse probability
weighting-based methods in the epidemiology/causal inference literature (Hernán et al.,
2004) or the Heckman correction in the quantitative social sciences (Heckman, 1976).

Beyond computational solutions, the harmful effects of disparate censorship and under-
testing can be minimized by mitigating clinician biases and reducing disparities in covariates
across groups. Mitigating clinician biases targets undertesting, such that patients with equal
risk are equally likely to be tested. Reducing disparities in covariates addresses Setting 2,
mitigating model performance gaps that arise due to undertesting the high-risk group.
While some covariate disparities may be due to physiological differences (i.e., pediatric vs.
adult patients), others emerge due to disparities in healthcare access or structural inequality,
disadvantaging various groups such as Black and Latinx patients (Brondolo et al., 2009), im-
migrant communities (Misra et al., 2021), and Black gender minorities intersectionally (Lett
et al., 2020). These studies further suggest that minimizing covariate differences requires
addressing underlying structural inequities in healthcare access and delivery.

The main limitations of our work lie in our theoretical assumptions. First, our simu-
lation design implicitly treats testing as diagnosis. While testing is often a prerequisite to
diagnosis, diagnostic decisions may be updated over time, which standard ML development
may not capture. For Settings 2 and 3, our theoretical results predicting convergence to zero
performance gap require clinician testing and condition status thresholds to be expressed
via a hard threshold with the same functional form. For Setting 2 in particular, we apply
normality assumptions on risk score distributions and patient covariates. These assump-
tions are necessary to make the theory tractable. In many cases, we know that clinicians
order tests/interventions on the basis of symptoms or clinical suspicion (as studied in Dolan
et al. (2005); Schulman et al. (1999)). Thus, while we expect our assumptions to partially
hold, it is unclear to what extent they hold in practice.

Nevertheless, this paper provides a foundation for a deeper exploration of the impacts
of disparate censorship and undertesting. We suggest a plausible mechanism of dataset bias
and conditions under which gaps in model performance (∆AUC,∆xAUC) are likely to arise.
Our theoretical results highlight when zero performance gap is feasible, and also suggest
when nonzero performance gaps may occur. Our simulation study supports these theoretical
insights. We further identify disparate censorship in the form of disproportionately low rates
of laboratory/diagnostic test orders for Black patients in MIMIC-IV, a concerning finding
due to the wide usage of MIMIC-IV in clinical ML. Our findings motivate diligence in
understanding and mitigating health disparities, and raise warnings about the responsible
deployment of ML systems in healthcare. Ultimately, we believe that a combination of
computational tools alongside social policy and public health interventions will provide a
path to recognize and address the negative impacts of disparate censorship.
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Thomas D Rea, André Scherag, Gordon Rubenfeld, Jeremy M Kahn, Manu Shankar-Hari,
Mervyn Singer, et al. Assessment of clinical criteria for sepsis: for the third international
consensus definitions for sepsis and septic shock (sepsis-3). Jama, 315(8):762–774, 2016.

Camelia Simoiu, Sam Corbett-Davies, and Sharad Goel. The problem of infra-marginality
in outcome tests for discrimination. The Annals of Applied Statistics, 11(3):1193–1216,
2017.

Gopal K Singh, Gem P Daus, Michelle Allender, Christine T Ramey, Elijah K Martin,
Chrisp Perry, Andrew A De Los Reyes, and Ivy P Vedamuthu. Social determinants of
health in the United States: addressing major health inequality trends for the nation,
1935-2016. International Journal of MCH and AIDS, 6(2):139, 2017.

Kayte Spector-Bagdady, Shengpu Tang, Sarah Jabbour, W Nicholson Price, Ana Bracic,
Melissa S Creary, Sachin Kheterpal, Chad M Brummett, and Jenna Wiens. Respecting
autonomy and enabling diversity: The effect of eligibility and enrollment on research data
demographics. Health Affairs, 40(12):1892–1899, 2021.

Erin Teeple, Thomas Hartvigsen, Cansu Sen, Kajal T Claypool, and Elke A Rundensteiner.
Clinical performance evaluation of a machine learning system for predicting hospital-
acquired clostridium difficile infection. In HEALTHINF, pages 656–663, 2020.

Darshali A Vyas, Leo G Eisenstein, and David S Jones. Hidden in plain sight—reconsidering
the use of race correction in clinical algorithms, 2020.

Jialu Wang, Yang Liu, and Caleb Levy. Fair classification with group-dependent label
noise. In Proceedings of the 2021 ACM Conference on Fairness, Accountability, and
Transparency, pages 526–536, 2021.

Shujian Yu, Ammar Shaker, Francesco Alesiani, and Jose C Principe. Measuring the dis-
crepancy between conditional distributions: Methods, properties and applications. arXiv
preprint arXiv:2005.02196, 2020.

23



Disparate Censorship & Undertesting: A Source of Label Bias

Appendix A. Proofs

A.1. Preliminaries

First, we restate the definition of a boundary-consistent noise (BCN) model from Menon
et al. (2018), which is useful for our proofs.

Definition 5 (Boundary-consistent noise (BCN) model.) Define class probability func-
tion η(x) = P (Y = 1 | x). Consider a data generating process in which (x, ỹ) is generated
by drawing an instance (x, Y ) and flipping Y with instance- and label-dependent probability
ρY (x). Suppose that label flip-probability functions ρy can be written in the form ρy = fy ◦s,
where fy : R → [0, 1] for y ∈ {0, 1} and s : X → R, and ρ0(x) + ρ1(x) < 1 for all x. Then,
a noise model (f0, f1, s, η) is BCN-admissible if the following conditions are satisfied:

• Feasible ranking: s is order-preserving in x for η; that is, for any (x,x′) ∈ X , then
η(x) < η(x′) implies s(x) < s(x′).

• Piecewise-monotonicity: f0 and f1 are non-decreasing where η ≤ 1
2 , and non-

increasing otherwise.

• Flip-probability monotonicity: f1(z)− f0(z) is non-increasing in z.

Note that, for our setting, since f0 is constant, we can combine the two monotonicity
constraints: it is sufficient that f1 is non-increasing in z. Furthermore, we restate an
important property of the BCN model shown in Menon et al. (2018) with some notation
adapted to our setting:

Theorem 6 (Theorem 2 of Menon et al. (2018).) Pick any distribution D. Let D̄ be
a corrupted distribution. Suppose that for any x,x′ ∈ X , η(x) < η(x′) implies η̃(x) < η̃(x′),
where η̃ is the analogue of η on noisy labels ỹ (i.e. η̃(x) − P (Ỹ = 1 | X = x)), and there
exists a constant C such that |η(x) < η(x′)| ≤ C · |η̃(x) < η̃(x′)|. Then, for any scorer s,

regrank(s;D) ≤ C · π̄(1− π̄)

π(1− π)
· regrank(s; D̄) (3)

where regrank is the excess ranking risk of a scorer s, and π = P (Y = 1), π̄ = P (Ỹ = 1).
In particular, if D̄ = BCN(D, f0, f1, η) where (f0, f1, s, η) are BCN-admissible, then C =
(1− 2 · ρmax)− 1, where ρmax = sup

x∈X
P (Ỹ = 0 | Y = 1, X = x) is sufficient.

We defer to Menon et al. (2018) for the proof. This states that optimizing a model for
AUC on noisy labels in a BCN model is consistent with optimizing a model for AUC on
clean labels: both converge to the same Bayes-optimal scorer.

Lastly, we prove a Lemma relating the Bayes-optimal overall AUC to the Bayes-optimal
within-group AUC and xAUC under perfect separability.

Lemma 7 (No ranking performance gap under perfect separation.) Let η(x) =
P (Y = 1 | X = x). If Y is perfectly separable in x; that is, there exists some s : X → {0, 1}
such that s(x) = y for all x ∈ X , and P (X | Y = y,A = a) > 0 for any y, a ∈ {0, 1}, then
∆AUC,∆xAUC = 0.
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Proof Under perfect separation, for the Bayes-optimal ranker η, we know that P (η(x) <
η(x′)) = 1 where x ∈ {x | x ∈ S, Y = 1}, x′ ∈ {x | x ∈ S′, Y = 0} for any S, S′ ⊆ X .

First, we show that ∆AUC = 0. Choose S = {x | x ∈ X , Y = 1, A = a} and S′ =
}x | x ∈ X , Y = 0, A = a} for arbitrary a ∈ {0, 1}. Then the Bayes-optimal within-group
AUC is 1 for each a, so ∆AUC = 0 as required. Now, we show that ∆xAUC = 0. Choose
S = {x | x ∈ X , Y = 1, A = 1} and S′ = {x | x ∈ X , Y = 0, A = 0} (without loss of
generality in assignment of A). Then the Bayes-optimal xAUC is 1 for each assignment of
A, so ∆xAUC = 0. We have shown that ∆AUC,∆xAUC = 0, concluding the proof.

A.2. Proof of Theorem 3

Proof First, we show feasible ranking holds. As y ∈ {0, 1}, η(x) < η(x′) implies that
s(x) ≤ b and s(x′) > b, from which s(x) < s(x′) follows as required.

Now, define η(x) = P (Y = 1 | X = x), and f1(z) = P (Ỹ = 0 | Y = 1, Z = z) for
z = s(x), and pa as P (A = 0). We show that f1 is monotonically non-increasing on the
interval where η > 1/2 if either no positives are tested or τ0 ≥ τ1. If no positives are tested,
then the theorem is vacuously true. Otherwise, we first define b = inf

x∈X :y=1
(s(x)). In other

words, b is the threshold that perfectly separates negative from positives examples. Then,
choose some τ1 > b, and some τ0 ≥ τ1. We can write f1, which is the probability that a
positive label is flipped, as

f1(z) =


1− c z < τ1

pa·exp
(
− (z−µ0)

2

2σ2

)
pa·exp

(
− (z−µ0)

2

2σ2

)
+(1−pa)·(1−c)·exp

(
− (z−µ1)

2

2σ2

) τ1 ≤ z < τ0

0 z ≥ τ0

. (4)

This is clearly non-increasing on (−∞, τ1), [τ0,∞), so it suffices to show that f1(z) is
non-increasing on [τ1, τ0)], and that f1(τ1) ≤ 1− c, f1(τ0) ≥ 0. Note that the portion of f1
for τ0 ≤ z < τ1 is simply Pr[A = 1]/(Pr[A = 0]+Pr[A = 1]), since group A = 1 is censored
with probability 1− c and group A = 0 is not censored in that region. Denote this function
as a(z).9 We rewrite the portion of f1 for τ1 ≤ z < τ0 as a sigmoid function:

a(z) =
pa · exp

(
− (z−µ0)2

2σ2

)
pa · exp

(
− (z−µ0)2

2σ2

)
+ (1− pa) · (1− c) · exp

(
− (z−µ1)2

2σ2

) (5)

=
1

1 + exp
(
log (1−pa)(1−c)

pa
+ (z−µ0)2−(z−µ1)2

2σ2

) (6)

=
1

1 + exp
(
log (1−pa)(1−c)

pa
+ 1

2σ2 [(2z − µ0 − µ1)(µ1 − µ0)]
) . (7)

We further rewrite Eq. 7 in the form σ(g(z)), where

g(z) = log
pa

(1− pa)(1− c)
+

(2z − µ0 − µ1)(µ0 − µ1)

2σ2
. (8)

9. If τ1 ≤ b instead, then only the portion of f1 where f1(z) = 0 is observed, which is trivially non-increasing.
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Then, taking derivatives:

d

dz
a(z) = σ(g(z))(1− σ(g(z)))

d

dz
g(z) = σ(g(z))(1− σ(g(z)))

(
(µ0 − µ1)/2σ

2
)
≤ 0, (9)

where the final inequality follows since µ1 ≥ µ0 by assumption. Thus, a(z) is monotonically
non-increasing, which is what we wanted to show. To conclude, since g : R → R and
σ : R → (0, 1), clearly f1(τ0) ≥ 0. Furthermore, rewriting the constraint f1(z) = σ(g(τ1)) ≤
1− c and simplifying yields

τ1 ≤ log
(1− c)2(1− pa)

c · pa
· 2σ2

µ0 − µ1
+

µ0 + µ1

2
, (10)

i.e., some negative offset of the midpoint between the group-wise means µ0, µ1. So f1(τ1) ≤
1− c for such choices of τ1. Thus, (f0, f1, s, η) is BCN admissible. Applying Theorem 5 and
Lemma 2 concludes the proof.

Remark 8 Our simulation yields a risk score distribution in random variable sα(x). As-
suming the effect of clipping with respect to range [0, 1] is negligible, which is true for µa

near 0.5, the distribution sα(x) is approximately univariate Gaussian, allowing the appli-
cation of Theorem 3. This is because the sum of independent Gaussians is Gaussian, so by
the definition of sα(x), the distribution of scores is approximately a discretized univariate
Gaussian distribution.

Remark 9 We can apply the same argument in this proof to risk distributions beyond
homoscedastic Gaussians, based on whether Pr[A = 0]/(Pr[A = 0] + Pr[A = 1]) is non-
decreasing on [τ1, τ0). Let R0(z), R1(z) be the probability density functions of risk scores z
for group a = 0, a = 1, respectively. Clearly, if R0(z)/[R0(z) +R1(z)] is non-decreasing on
[τ1, τ0), that would satisfy boundary consistency. Alternately, applying quotient rule shows
that R′

0(z) ·R1(z)−R0(z) ·R′
1(z) > 0 is also sufficient to violate boundary consistency.

A.3. Proof of Theorem 4

Proof We prove that each BCN condition is satisfied. First, we show that feasible ranking
holds. Choose any x,x′ ∈ X . Recall that t = 1[θ⊤x+β > 0∨p = 1] where p ∼ Bernoulli(c)
and y = 1[sa(x) > 0], where sa(x) = θ⊤

a x+ ba. Since y ∈ {0, 1}, η(x) < η(x′) implies that
sa(x) ≤ 0 and sa(x

′) > 0, from which sa(x) < sa(x
′) follows, as required.

Next, we show that the piecewise-monotonicity constraint holds. To do so, we need
to show that the flip probability function f1 is non-increasing where η(x) ≥ 1/2, or on
s(x) = θ⊤a x+ ba > 0 for all a. Consider an arbitrary group a with corresponding θa, ba. We
can write f1 as

f1(·) =
{
c θ⊤x+ β ≤ 0

0 otherwise
. (11)
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Now, suppose that there exists some δ ∈ R, δ > 0 such that θ = θaδ. Choose any x,x′ ∈ X
such that 0 < θ⊤

a x+ ba < θ⊤
a x

′ + ba.
10 Then:

θ⊤
a (x− x′) > 0 ⇐⇒ δθ⊤

a (x− x′) > 0 (12)

⇐⇒ θ⊤(x− x′) > 0 (13)

⇐⇒ θ⊤x+ β > θ⊤x′ + β. (14)

Let L = θ⊤x+β,R = θ⊤x′+β. There are three possible value-pairs in the final inequality:
(1) L < 0, R < 0, (2) L < 0, R ≥ 0, and (3) L ≥ 0, R ≥ 0. We need to show that, in each
setting, f(L) ≥ f(R). For the first case, L < 0, R < 0 implies that f1(L) = f0(L) = c, so
f(L) ≥ f(R) clearly. For the second case, L < 0, R ≥ 0 implies that f1(L) = c, f0(L) = 0,
so f(L) > f(R), from which f(L) ≥ f(R) is assured. Lastly, the third case is identical to
the first as f1(L) = f0(L) = 0 if both L,R ≥ 0. Thus, piecewise-monotonicity is satisfied.

Lastly, as f0 is the zero function, flip-probability monotonicity follows for free from the
preceding. As all three BCN conditions are satisfied, and the choice of a was arbitrary,
(f0, f1, s, η) is BCN-admissible, which is what we wanted to show. Applying Theorem 6,
Lemma 7 concludes the proof.

Remark 10 The generalization to non-linear decision boundaries follows naturally from
using reproducing kernel Hilbert spaces ϕ(x), ϕ(x′) ∈ H where the kernel for H, K : X×X →
R corresponds to a feature map ϕ : X → H (i.e. ϕ(x)⊤ϕ(x′) = K(x,x′)). Then, since
a Hilbert space is a complete metric space (i.e. inner product is well-defined), the proof
proceeds identically.

Remark 11 The generalization to s of the form sa(x) = θ⊤
a g(x) + β where g is element-

wise monotonic non-decreasing is also straightforward. We say that a function g : Rd → R
is element-wise monotonic non-decreasing if for any x ≺ x′, g(x) ⪰ g(x′), where ≺,⪰ are
element-wise inequality operators. Then, substituting g(x), g(x′) for x,x′ in the proof, in
Eq. 14, since g is element-wise monotonic non-decreasing, then θ⊤g(x) > θ⊤g(x′) implies
θ⊤x > θ⊤x′, from which the proof proceeds identically.

Appendix B. Simulation Study Details

The simulation takes global parameters µa ∈ R, σ2 ∈ R, τa ∈ R, c ∈ (0, 1], and functions
sa : X → R. Note that parameters subscripted by a ∈ {0, 1} may vary by group a. For
each individual, the data generating process proceeds:

x ∼ max(0,min(1,N (µa1, σ
2I))) (15)

y = 1 [sa(x) > 5] (16)

t ∼ max (1 [sa(x) > τa ∨ p = 1]) , p ∼ Bernoulli(c) (17)

ỹ = y · t (18)

10. Note that, by the definition of y (which is η(·) in this setting), we only need to (and can only) show
monotonicity for x such that θ⊤a x+ ba > 0.
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Setting µ sa(x)

1 µ0 = µ1 = 0.45 s0(x) = s1(x) = s(x)
2 µ0 = 0.35, µ1 = 0.55 s0(x) = s1(x) = s(x)
3 µ0 = µ1 = 0.45 s0(x) = s(x), s1(x) = s(Rot(x;ϕ, d′,x0))

Table 1: Simulation settings for each of the three distributional settings studied. Note that
σ2
0 = σ2

1 = 0.1 for all settings. Scoring function s(x) is defined in Eq. 19.

Concretely, we generate x ∈ R10 for each individual from a multivariate normal distribu-
tion. Each Gaussian is assigned mean µa1 based on a, where 1 is a 10-dimensional all-ones
vector and I is the identity matrix of size 10 × 10. We clip all covariates between 0 and 1
(Statement 15). The process for generating y follows directly from our theoretical setup.
For sa(x), we use an 10-dimensional ceiling function (see Figure 6 for a 2D example):

s0(x) = s1(x) =
1

5

(
10∑
i=1

⌈5xi⌉
)
. (19)

This function discretizes each element of x (xi) into 5 equally-spaced bins of size 1/5. If the
sum of these values exceeds 5, then y = 1 (Eq. 16). Note that sa(·) can be interpreted as a
true risk function for y as a function of x. Except where specified, s0(·) = s1(·). We generate
t similarly to y based on a threshold applied to sa(·), but vary τa ∈ R as an experimental
threshold parameter to control the level of undertesting (Eq. 17). If the risk for a patient
in group a lies above τa, they are tested with probability 1; otherwise, they are tested with
probability c = 0.05. Lastly, ỹ ≜ y if t = 1 and is 0 otherwise (Eq. 18). This models the
fact that a test result is only observable when a test is ordered.

Simulating Distributional Differences. To induce differences in the marginal and con-
ditional risk distributions for each patient subgroup, we vary the simulation settings follow-
ing Table 1. We define Rot as

Rot(x;ϕ, d′,x0) =

R(−ϕ)

...
. . .

0 . . . R(−ϕ) 0

0 . . . 0 I10−d′





d ′/2 times
(x− x0) + x0, (20)

where the function r applies a 2 × 2 rotation matrix R(−ϕ) about x0 = 0.4 · 1 to any
number of pairs of dimensions (rotating the decision boundary by ϕ about the point x0 in

orthogonal 2D subspace(s)). Setting ϕ, d′ ̸= 0 satisfies P0(y | x)
d
̸= P1(y | x). Note that Rot

breaks the parallelism between the censorship and decision boundaries.
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Appendix C. Evaluation Metrics

We provide further intuition for our usage of within-group AUC and xAUC. Recall that the
AUC is the probability that a randomly chosen positive example, xi, has a greater risk score,
than a randomly chosen negative example, xj (i.e., P (s(xi) > s(xj))). The within-group
AUC for group a, written as AUCa, is thus the AUC considering only examples in group
a (Figure 4, cyan). The xAUC has a similar interpretation: xAUCa,a′ is the probability
that a randomly chosen positive example from group a is scored above a randomly chosen
negative example from group a′ (Figure 4, magenta). We defer to Kallus and Zhou (2019)
for details on xAUC.

This yields a decomposition of the overall AUC in terms of within-group AUC and
xAUC (Figure 4). Let py(a) = P (A = a | Y = y) for a ∈ {0, 1}, y ∈ {0, 1}. By the law of
total probability, and probabilistic definitions of AUC and xAUC, we have:

Overall AUC = p0(0) · p1(0) ·AUC0 + p0(1) · p1(1) ·AUC1

+ p0(0) · p1(1) · xAUC1,0 + p0(1) · p1(0) · xAUC0,1. (21)

Hence, a perfectly separable problem guarantees that an AUC of 1 is possible. When
an AUC of 1 is achieved, within-group AUC and xAUC for all groups must also be 1 for
Eq. 21 to hold.

Appendix D. Model Details

We provide all settings used for model training here.

D.1. Model Training

We train probabilistic kernel support vector machines (SVMs) (Platt et al., 1999), but any
non-linear model suffices. For each setting of the simulation (i.e., unique combination of
simulation parameters), we train two SVMs with each model using one set of labels y, ỹ on
the same 100 realizations of the simulation with 2,000 training data points and evaluate all
models on a simulated sample of 20,000 test samples. As preprocessing, we apply one-hot
encoding to x after discretization.

D.2. Model Hyperparameters

As the focus of this paper is on evaluation, we keep all default parameters for the SVM; that
is, regularization weight C = 1 and γ = (d · V ar(vec(x)))−1 where x ∈ Rn×d for the radial
basis function kernel, where vec is the matrix vectorization operator (i.e. auto setting in
scikit-learn).

D.3. Software

We use scikit-learn for the SVM implementation, which is built on LIBSVM (Chang and
Lin, 2011).
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Appendix E. Full Results

For MIMIC results, we report the test names as well as the results of the hypothesis test.
For the simulation study, we report the raw AUC and xAUC values by group with empirical
95% confidence intervals for all experiments.

E.1. Disparate Censorship in MIMIC-IV

Dataset description. We restrict the analysis to all hospital admissions involving a
White (n = 337630) or Black/African-American patients (n = 80293; total: n = 417923).
These categories were chosen as they represented the two most frequently-appearing racial/ethnic
categories in the dataset. We selected the following set of common laboratory/diagnostic
tests to investigate for disparate censorship: complete blood counts (CBC), with and with-
out differential (CBC w/ diff.), base metabolic panels (BMP), Troponin T tests, D-dimer
tests, arterial blood gas (ABG) tests, blood culture orders (for any organism), brain na-
triuretic peptide (BNP) tests, and chest X-ray (CXR) orders.11 To obtain results for ICU
and ED admissions, we cross-referenced hospital admission identifiers for ICU and ED stays
from the relevant tables to obtain the relevant subset of patients.

CBC, CBC w/ diff., BMP, Troponin T, D-dimer, ABG, and BNP test results were di-
rectly available from the publicly available MIMIC concept SQL queries. Additionally, for
CBC w/ diff., we excluded rows that did not contain any non-null values in the following
columns: "basophils abs", "eosinophils abs", "lymphocytes abs", "monocytes abs",
"neutrophils abs", "basophils", "eosinophils", "lymphocytes", "monocytes",
"neutrophils", "atypical lymphocytes", "bands", "immature granulocytes",
"metamyelocytes", and "nrbc". For the BMP, we excluded rows that did not contain any
non-null values in the following columns: "bicarbonate", "bun" (blood urea nitrogen),
"calcium", "chloride", "creatinine", "glucose", "sodium", and "potassium". For
CXR, we extracted information using the publicly-available MIMIC-CXR processing code at
https://github.com/MIT-LCP/mimic-cxr/blob/master/dcm/create-mimic-cxr-jpg-metadata.

ipynb.
We then extracted the testing rates (P (T ), % of admissions featuring at least one in-

stance of the relevant test order) in each patient group (White vs. Black/African-American)
and applied a two-sided z-test for equality of proportions. The null hypothesis is that testing
rates are equal between groups (i.e., the test in question does not exhibit disparate censor-
ship in MIMIC-IV). Specifically, this tests the hypothesis that White and Black/African-
American patients were equally likely to receive a particular lab test order at any point(s)
during each admission. We use a 1% significance threshold with Bonferroni correction (9
tests total; α = 1.1×10−3). All p-values below 10−4 are reported as “< 10−4.” In summary,
significant disparate censorship with respect to race was identified in all tests examined
except for Troponin T and d-dimer tests.

11. For CXR only, since the MIMIC-CXR data is sourced from 2011-16, we limit ourselves to hospital admis-
sions in that timeframe, yielding 122860 White patient admissions and 25968 Black/African-American
admissions (total: 148828).
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Test name P (T ), White P (T ), Black z p

CBC 73.71 68.20 30.46 < 10−4

CBC w/ diff. 31.67 28.81 16.01 < 10−4

BMP 71.26 63.72 40.42 < 10−4

Blood cultures 15.20 13.01 16.36 < 10−4

CXR 27.61 26.57 3.43 6.0× 10−4

ABG 13.75 10.42 27.10 < 10−4

Troponin T 8.72 8.58 1.29 0.20
BNP 3.82 3.48 4.74 < 10−4

D-dimer 0.21 0.25 -1.83 0.07

Table 2: Disparate censorship in common laboratory/diagnostic tests in White vs.
Black/African-American patients, MIMIC-IV v1.0, with testing rates by group, z-statistics,
and p-values.

E.2. Setting 2: Difference in marginal risk distributions

We provide full results with empirical 95% confidence intervals for ∆AUC (Table 3) and
∆xAUC (Table 4) under marginal distributional differences. We report results for the full
cross-product of τ0, τ1 ∈ {5, 5.4, 5.8, 6.2, 6.6, 7} with their associated group noise rates.

E.3. Setting 3: Difference in conditional risk distributions

We provide full results with empirical 95% confidence intervals for ∆AUC and ∆xAUC
under marginal distributional differences organized by d′, the number of dimensions rotated
for group a = 1 individuals. We plot heatmap visualizations of the performance gap as a
function of noise rate (i.e. τ1) and conditional shift (ϕ) across levels of d′. We index the
figures with results for all choices of d′ below:

• d′ = 2: Figure 12

• d′ = 4: Figure 13

• d′ = 6: Figure 14

• d′ = 8: Figure 15

• d′ = 10: Figure 16

We index the tables with all raw AUC and xAUC values below:

• d′ = 2: AUC (Table 5), xAUC (Table 6)

• d′ = 4: AUC (Table 7), xAUC (Table 8)

• d′ = 6: AUC (Table 9), xAUC (Table 10)

• d′ = 8: AUC (Table 11), xAUC (Table 12)
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Figure 12: Heatmap showing median ∆AUC (left) and ∆xAUC (right) at varying levels
of conditional shift (x-axis) and censorship rate in a = 1 (y-axis); 2 dimensions rotated.
Regions with smaller performance gap are in dark blue, while larger performance gaps are
in dark red.
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Figure 13: Heatmap showing median ∆AUC (left) and ∆xAUC (right) at varying levels of
conditional shift (ϕ; x-axis) and censorship rate in a = 1 (P1(t = 0), y-axis); 4 dimensions
rotated. Regions with smaller performance gap are in dark blue, while larger performance
gaps are in dark red.

• d′ = 10: AUC (Table 13), xAUC (Table 14)

In general, performance gaps worsen as d′ or ϕ increase. Note the apparent duplicated
AUC values at d′ = 10, ϕ = 180; as all 100 realizations of the simulation share the same
set of random seeds across all experiments—since all dimensions are rotated, all points in
group a = 1 flip across the decision boundary, yielding the exact same censorship pattern.
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Figure 14: Heatmap showing median ∆AUC (left) and ∆xAUC (right) at varying levels of
conditional shift (ϕ; x-axis) and censorship rate in a = 1 (P1(t = 0), y-axis); 6 dimensions
rotated. Regions with smaller performance gap are in dark blue, while larger performance
gaps are in dark red.
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Figure 15: Heatmap showing median ∆AUC (left) and ∆xAUC (right) at varying levels of
conditional shift (ϕ; x-axis) and censorship rate in a = 1 (P1(t = 0), y-axis); 8 dimensions
rotated. Regions with smaller performance gap are in dark blue, while larger performance
gaps are in dark red.
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Figure 16: Heatmap showing median ∆AUC (left) and ∆xAUC (right) at varying levels of
conditional shift (ϕ; x-axis) and censorship rate in a = 1 (P1(t = 0), y-axis); 10 dimensions
rotated. Regions with smaller performance gap are in dark blue, while larger performance
gaps are in dark red.

E.4. Additional Results for Varying Marginal Distributional Distance (Setting
2)

Increasing divergence between the marginal risk distributions correlates with
larger performance gaps under disparate censorship. We set τ0 = 5, τ1 = 6.6, a
setting in which we observed performance gaps under disparate censorship, and vary ∆µ
(defined as µ1 − µ0) and σ. We also fix µ0 + µ1 = 0.35 + 0.55 = 0.9. We are interested
whether varying the KL divergence between the marginals, given by 1

2σ∥∆µ∥22, impacts the
magnitude of performance gaps. To that end, we first explore the impacts of changing σ
for both groups on subgroup performance gaps. We then vary ∆µ, or the difference of the
means between the marginal risk distributions, on subgroup performance gaps. In summary,
we find that increasing the KL divergence by either decreasing the within-group variance
or increasing the mean difference exacerbates the negative impacts of disparate censorship.

We first evaluate the effect of within-group variance. As we decrease σ2 from 0.2 to
0.05, we observe increasing AUC and xAUC gaps. As seen in Figure 17, at a variance of
0.05 (left side, all graphs), the median AUC and xAUC gaps are 0.09 and 0.22. However,
as we increase the within-group variance to 0.2 (right side, all graphs), the median AUC
and xAUC gaps narrow to 0.01 and 0.06. Decreasing σ2 also decreases the overlap between
the two distributions, leading to greater performance disparities.

We then evaluate the effect of mean difference on performance disparities. As between-
group mean difference increases, disparities between groups generally worsen with respect to
oracle performance. We increase the per-element mean difference between the distributions
from 0 to 0.4, keeping the decision boundary constant. Figure 18 shows that as mean
difference ∆µ increases, disparities in AUC, xAUC emerge. At ∆µ = 0, the performance is
identical to the oracle, as expected. At ∆µ = 0, we are in Setting 1: there are no marginal
or conditional differences between groups. However, as ∆µ grows to 0.3, the AUC and
xAUC gaps increase to 0.03, 0.14, respectively.
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Figure 17: ∆AUC (left) and ∆xAUC (right) with 95% empirical CIs for the model trained
on y (gray) and on ỹ (green). As σ2 increases to the right, increasing overlap between the
distributions, the number of missed positives in group a = 1 increases, and the AUC and
xAUC gaps narrow. Note that P0(ỹ = 0 | y = 1) = 0—there are no missed positives in
group a = 0.
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Figure 18: ∆AUC (left) and ∆xAUC (right) with 95% empirical CIs for the model trained
on y (gray) and on ỹ (green). As ∆µ increases to the right, the AUC and xAUC gaps
widen. Note that P0(ỹ = 0 | y = 1) = 0—there are no missed positives in group a = 0.
The number of missed positives in group a = 1 (red) first increases, then decreases, since
sufficiently high ∆µ means that untested patients’ risk largely lies in one tail of the risk
distribution.

Our results suggest that distributional distance between patient subgroups as measured
using mean difference and variance is correlated with performance disparities. Character-
izing distributional differences in patient subgroup risk could provide expected levels of
performance disparities under disparate censorship. Full results are provided in Table 15
(differences in ∆µ) and Table 16 (differences in σ2).

Appendix F. Code

For reproducibility, code used to generate all figures and experimental results after review
is provided at the MLD3 Github.
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Intergroup mean diff. (∆µ) Group AUC xAUC

0
a = 0 95.8 (95.2, 96.2) 95.7 (95.0, 96.2)
a = 1 95.8 (95.2, 96.3) 95.9 (95.2, 96.3)
∆ 0.1 (0.0, 0.4) 0.2 (0.0, 0.5)

0.1
a = 0 94.7 (93.8, 95.4) 97.1 (96.5, 97.5)
a = 1 95.8 (95.0, 96.3) 92.4 (91.1, 93.2)
∆ 1.0 (0.7, 1.5) 4.8 (4.2, 5.6)

0.2
a = 0 95.1 (94.0, 95.7) 98.6 (98.3, 98.8)
a = 1 96.8 (96.2, 97.3) 89.5 (87.8, 90.7)
∆ 1.8 (1.3, 2.3) 9.2 (8.0, 10.6)

0.3
a = 0 96.5 (95.8, 97.1) 99.6 (99.5, 99.7)
a = 1 98.5 (98.1, 98.7) 88.2 (86.0, 89.9)
∆ 1.9 (1.5, 2.5) 11.4 (9.8, 13.4)

Table 15: AUC, xAUC with empirical 95% CIs at varying settings of ∆µ, τ0 = 5, τ1 = 6.6.

Within-group var. (σ2) Group AUC xAUC

0.05
a = 0 93.7 (91.6, 95.5) 98.2 (97.5, 98.7)
a = 1 94.1 (92.7, 95.3) 81.0 (78.3, 83.5)
∆ 0.5 (0.0, 1.3) 17.2 (15.2, 19.2)

0.1
a = 0 95.9 (95.1, 96.6) 98.4 (98.1, 98.7)
a = 1 95.7 (95.0, 96.4) 89.0 (87.3, 90.4)
∆ 0.2 (0.0, 0.5) 9.4 (8.2, 10.7)

0.15
a = 0 96.4 (95.9, 96.9) 98.3 (98.0, 98.6)
a = 1 96.1 (95.5, 96.6) 91.8 (90.5, 92.9)
∆ 0.3 (0.0, 0.7) 6.5 (5.6, 7.5)

0.2
a = 0 96.7 (96.3, 97.2) 98.2 (97.9, 98.6)
a = 1 96.4 (95.9, 97.0) 93.4 (92.5, 94.4)
∆ 0.2 (0.0, 0.6) 4.8 (4.1, 5.4)

Table 16: AUC, xAUC with empirical 95% CIs at varying settings of σ2, τ0 = 5, τ1 = 6.6.
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